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The extension of initial surface cracks by the focusing of the ionic current in beta 
alumina electrolytes (Mode I degradation) is discussed in terms of existing models. 
Focusing for an ion current impinging on an elliptic-cylindrical flaw is calculated by 
solving for the electric potential with suitable boundary conditions. The current density 
distribution along the crack is used to calculate the sodium flow velocity and Poiseuille 
pressure inside the flaw. Calculated critical current densities using a KIc criterion are 
several orders of magnitude higher than measured average critical current densities. This 
implies a lower effective Kic for electrolytic degradation than for mechanical testing. 
Current density enhancement around insulating barriers, such as non-wetted surface 
areas, is also calculated using elliptic- cylindrical coordinates. Significant current density 
enhancements are found, but they are localized in very small regions. Crack growth 
would occur within these regions, but should be arrested once the flaw extends past the 
high current density zone. A plausible mechanism for decreasing Kic in the electrolytic 
case is discussed. 

1. Introduction 
The degradation of sodium-/3 and/3" alumina fast 
ion conductors during cycling in sodium/sulphur 
cells may occur by different mechanisms [1]. 
Mode I degradation is the penetration of the 
electrolyte by a sodium-filled crack or crack net- 
work propagated through the electrolyte from the 
sodium/~ alumina interface, driven by cathodic 
plating of sodium into the crack. In contrast to 
Mode I, Mode II degradation results from the 
formation of sodium metal in the bulk of the 
solid electrolyte as a consequence of the develop- 
ment of some electronic conduction. For Mode I, 
the local cathodic deposition of sodium is enhanced 
by the crack geometry. A specific calculation 
requires the assumption of a specific crack geo- 
metry. As was indicated by De Jonghe et al. [2], 
this crack geometry may be complicated in the 
propagation phase where frequently crack branch- 
ing may be observed. For the purpose of calculat- 
ing current density thresholds for the initiation 

of Mode I failure, the assumption that a single, 
small, sodium-filled surface crack is the active 
defect appears to be quite plausible. 

In the first treatment of the Mode I breakdown 
problem by Armstrong et al. [3], the electrolyte 
was modelled as a parallel sided slab with a sodium- 
filled flaw extending perpendicular to the sodium/ 
electrolyte interface. The flaw was then considered 
to take the form of a hemispherically capped 
cylinder. The current flowing into the flaw was 
obtained by assuming the sodium metal to be at 
the same potential everywhere, and by calculating 
an effective resistance around the tip of the crack. 
This approximate treatment gave the qualitative 
result that the crack growth velocity is proportional 
to the crack length and to the average current 
density in the slab, but it did not make use of a 
critical fracture concept and did not yield a 
"threshold" current density below which degrada- 
tion of this type will not occur. 

A further analysis has been given by Shetty et  
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aL [4], in which the crack shape was calculated 
using elasticity theory such that its shape was 
consistent with the pressure generated due to the 
viscous flow of the sodium within. A crack p rof i l e -  
pressure distribution was then determined by an 
iterative calculation reaching self-consistent results. 
The finding was that the profile changed little 
after the first iteration, given an approximately 
parallel sided crack with rounded tip and a uni- 
form pressure gradient. By incorporating the 
critical fracture concept together with the linear 
pressure profile, large current densities were calcu- 
lated to be necessary for crack extension. The 
current densities were on the order of  1500A 
cm -2 for an initial flaw length of 25/~m in/3" 
alumina. This is about a factor of  10 3 larger than 
the typical average current densities that are 
observed for the initiation of rapid breakdown by 
Mode I. 

A more accurate treatment is given here for the 
current focusing and fracture problem, in that it 
calculates directly the primary current density 
distribution and sodium pressure along the crack. 
Some simplification in the analysis is achieved by 
using an elliptic-cylindrical crack shape. This 
further refinement of  the current focusing prob- 
lem leads to a critical current density that is even 
higher than the ones calculated in the more approxi- 
mate treatments,  necessitating the introduction of 
additional crack tip processes, such as metal 
deposition ahead of  the crack tip. 

2. Current  focusing - sodium f low veloci ty 
The calculation is performed for a crack of elliptic- 
cylindrical shape, as shown in Fig. 1. The equation 
V 2 ~  = 0 is readily solved in elliptic-cylindrical 
coordinates in terms of elementary functions [5], 
and it remains only to tailor the boundary con- 
ditions fitting the present problem to determine 
the particular solution. The crack coordinate 
system and geometry are indicated in Fig. 2. The 
elliptic-cylindrical coordinates are defined by 

x = a cosh r /cos 

y = a sinh r/sin ~ (1) 

Z = Z .  

The crack parameters of  length, I, and one-half 
the crack opening displacement, r, are given by 

l = acosh~7o 
(2) 

r = a sinh % .  
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Figure I Current focusing geometry for elliptic-cylindrical 
crack. 

The potential is chosen to satisfy the uniform 
field condition at infinity, ~b = Eoox, while at the 
sodium/electrolyte interface, ~b = 0. The potential 
inside the electrolyte is then found to be 

E,~ a cos 

cosh % -- sinh r/o 

(cosh % sinh 7? -- sinh % cosh ~7). 

(3) 
Y 

Ok = ~T/2~ 

=3rff2 

~@ =0 
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Figure 2 Co-ordinate system for eUiptic-cylindrical crack. 



The field is obtained from E = -  Vq5 in elliptic- 
cylindrical coordinates. The current density 
flowing through the surface of the crack (r/= r/0) is 

/~ cos ~ (cosh 7/o + sinh r/o) 
/ = ( cosh2 r/o -- cos 2 ~),/2 (4) 

where ]~ = oE~. 
The current density at the tip (~O = 0) for a 

narrow crack (r/l ~ 1) is 

1max = J~ (1 + coth r/o). 
(5) 

This value is a factor of two smaller than the 
one obtained by the approximate treatments of 
Richman and Tennenhouse [6]. 

From the current density distribution, the total 
sodium flow as a function of distance along the 
crack can be found, yielding an average flow 
velocity that is independent of position along the 
crack. This is a consequence of the elliptic crack 
geometry and simplifies the calculation. The 
current contribution, j (~) ,  per unit width, w, 
along z for an element of arc along the crack 
surface is 

d/(r 
- 21G0 ) dS, ( 6 )  

W 

where dS = a (cosh2 r/o -- cos 2 ~)1/2 d~. 
The factor of 2 arises since the current is fed 

in from both sides of the crack. Substitution for 
/(q;) from Equation 4 and integration gives 

i(q;)/w =- 2j= a (cosh ~/o + sinh r/o) i_ cos ~ d~ 

or (7) 

i (~) /w = 2j= a (cosh r/o + sinh r/o) sin 0. 

The total current into the crack (~ = zr/2) per 
unit width is approximately 2j= a, which com- 
pares well with the estimate of Richman and 
Tennenhouse [6]. The flow velocity is related to 
the ratio of the flow through a cross section of 
the crack to the cross section area, i (~) /2wy(~) .  
This average flux j-is given by 

]- = /= (coshr/o + sinh r/o) (8) 
sinh r/o 

The flow velocity for sodium, ~, is determined 
from the relation ]-= hey where n is the atom 
number density of liquid sodium and e is the 
sodium ionic charge. Thus 

= v~ (1 + cothr/o) (9) 

where v~ =j~/ne .  Thus, the velocity, g, is inde- 
pendent of position along the elliptic-cylindrical 
crack. 

3. Flow pressure and fracture mechanics of 
crack 

The flow pressure is calculated, assuming Poiseuille 
type viscous flow along x between infinite parallel 
plates of spacing 2y 

dP - - 3 r ~  
~ -  y2 (10) 

where r is the viscosity and ~ is the average flow 
velocity. This will be in reasonable agreement with 
the present geometry away from the tip of a long, 
narrow crack with nearly parallel faces. 

In the high curvature region at the tip, the flow 
will be more nearly perpendicular to the walls. 
The assumption that ~ is given by Equation 9 up 
to the crack tip should over-estimate the pressure 
gradient near the tip, thus giving an upper bound 
on the pressure. The gradient is 

dP - - 3 r v  
(11) 

dx a2 sinh2 r/o s in2 ~ ' 

o r  

dP - 3 r g  
~ -  = r 2 ( l _ x : f l 2 ) .  ( l l a )  

Assuming P = 0 at x = 0, .we integrate to find 
P(x) 

P(x) = Po tanh-1 (xfl) (12) 

where Po = -  3rffl/r 2, which is the pressure head 
developed along a parallel sided channel of spacing 
2r. This is the pressure head value of Shetty et al. 
[4]. The two pressure distributions are compared 
in Fig. 3. 

In terms of fracture mechanics approach, KI 
must be evaluated for this internally loaded crack. 
It is given for an internally loaded edge crack 
[71 by 

2 f t [1 + .f (xfl)] l 1/2 P(x)  dx 
KI 7 - o  ( ~ - - x i )  i)~- (13) 

withf(u) = (1 --u)(0.2945 --0.3912u 2 + 0.7685u 4 
- - 0 . 9 9 4 2 u  6 + 0.5094u s). Equation 13 is an 
integral form of the formula for K I given by Sih 
[7] for loading by a point force. Substitution of 
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Figure 3 Comparison of calcu- 
lated pressure distributions along 
crack. 
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P(x) from Equation 12 reduces the problem to 
evaluating a series of  convergent integrals of  the 
form 

{ l + q ~  f2qn (1 _ q 2 ) - u 2  In \ ~ _ q  ] dq (14) 

which are transformed, by substituting y = l n  
(1 + q)/(1 - -q ) ,  into integrals of  the form: 

1/2 f ' Y  tanhn(y/2) dy (15) 
: o  cosh (y/Z) 

These integrals can be approximated numerically 
using Simpson's rule. The results (for r/l ~ 1) is: 

3.783 lU2Po 
KI - 

7f 

o r  

11.35 
K I - r(l/r)3l-V2v~. (16) 

Some results from fracture mechanics on the 
relation of crack displacement to length in a 
generalized crack geometry [8] may be used to 
eliminate r from Equation 14. This yields (see 
Appendix A) 

r = (4k/3) u4 l 3/4 (17) 

where 

2 11.35~- 
k -  - - v ~  

E r 71.3/2 

and E '  is the Young's modulus. This gives 

o r  

and 

K I = 1.35 E '3/40"v= l) 1/4 (18) 

KI = 1 .35E '3/4 (7"/ne)l/4(]~ 01/4 (18a) 

/crit = K~cE'-3ne/( 3.32 r l). (19) 

An illustration of some typical values of  the crack 
parameters are shown in Table I. The values of  the 
constants used are E '  = 10 s MPa, r = 0.34 centi- 

TABLE I Calculated values of l, ]~ and KI/KIe 

l (#m) ]~* (A cm -2 ) KI/KIc ? 

10 0.1 0.025 
10 0.08 

1000 0.25 

100 0.1 0.045 
10 0.14 

1000 0.45 

1000 0.1 0.08 
10 0.25 

1000 0.8 

*j= = K~E '3 ne[(3.32~1) 
TKIe "" 1.6 MPa m 1~2 from Shetty etal. [4] 
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poise for sodium at 300 ~ C, and ne  = 4.2 x 10 9 

coul m-a .  For comparison the mechanically deter- 
mined Kie is about 1.6 x 106 MPa m 1/2 [4]. As 
can be seen, the critical current densities for cracks 
of reasonable length are very high compared to 
the typical values that are observed for electrolyte 
failure by Mode I [4]. 

4. Current enhancement around a blocking 
region 

The problem of current distribution around a 
blocking layer in a solid electrolyte has been 
described by Virkar e t  al. [9] using a mechanical 
analogue of the current flow problem. It may also 
be treated directly as in the previously discussed 
example by choosing a suitable geometry in which 
the Laplace equation may be solved. In this case, 
an example of a blocking layer would be a portion 
of the electrolyte/sodium interface which is non- 
conducting, such as a non-wetted region or an 
unfavorably oriented plate-like crystallite in the 
surface. An elliptic-cylindrical geometry for the 
insulating barrier can be used again, and the 
Laplace equation is solved in elliptic-cylindrical 
coordinates. The flaw geometry and current flow 
orientation are shown in Fig. 4. The coordinates 
and crack parameters are the same as in the earlier 
example. The field far from the platelet is parallel 
to the y-axis and the condition on the potential 
at infinity is ~b = E ~ y .  The other conditions are 
that ~ = 0 in the x - z  plane (~ = 0, 7r) and the nor- 
mal derivative of the potential vanishes at the 
platelet surface, ~b/~r/= 0 where r /=  %.  The 
potential inside the electrolyte is given by 

E= sin qJ (cosh % cosh r / --  sinh r/o sinh r/) 4 =  
(cosh r/o -- sinh r/o) 

(20) 

from which the electric field and current density 
are determined directly. The magnitude of the 
current density normal to the electrolyte surface 
flowing across the x - z  plane (~ = 0, 7r) is 

coth r/coth % -- 1 
jy = ]~ (21) 

coth % -- 1 

The magnitude of the current density enhancement 
/max, at the edge of the platelet (7/= % ; ~ = 0, rr) 
is 

lmax = f i o ( c o t h n 0 +  1) 

~--j~l/r 
(22) 

This current density enhancement around the edge 
of the platelet is a factor of two smaller than the 
one obtained by Virkar et  aL [9] from the mech- 
anical analogue of the problem. 

An illustration of the qualitative nature of the 
mechanical analogue for the current density can 
be made by comparing the tangential stress around 
an elliptical hole in a sheet under uniaxial tension 
and the tangential current density around an 
identical hole in a conducting sheet with a uniform 
current density at infinity in place of the uniaxial 
tension. Fig. 5 shows the comparison between the 
calculated normalized tangential stress, as given 
in Jaeger [10] and the normalized tangential 
current density around the hole calculated as 
described above for r / l =  1/2. We see that the 

//# 

== I~X 
Figure 4 Geometry for elliptic- 
cylindrical blocking platelet. 
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Figure 5 Comparison of current 
density and tangential stress 
around elliptical hole in sheet. 

mechanical analogue is not exact in geometries 
such as these. For example, the calculated mech- 
anical stress enhancement at the point of highest 
curvature around the hole shown in Fig. 5 is 5/3 
times the electrical current density enhancement 
at the same point; the analogue tends to exagger- 
ate the current density enhancement. 

It is necessary to know the spatial extent of 
the zone of enhanced current density around the 
platelet. This allows an estimate of the increased 
current focusing experienced by an initial flaw 
situated at the edge of a platelet. From the rela- 
tion of current density to position along the 
electrolyte/metal interface the maximum current 
density is found to occur at the platelet edge and 
to decrease smoothly to the value j~ far from 
the platelet. Let us now take the current density 
to be uniform in the current enhanced region, 
instead of decreasing, with a value OfJmax ~ j~ I/r. 
Let us also take the current density to be uni- 
form outside the enhanced region, with a value of 
j~.  Since the boundary condition of uniform cur- 
rent density of magnitude i~ at large y imposes a 
definite total current, the conservation of current 
(Kirchoff's Law) determines the width, R, of the 
high field or high current region. The total current 
in that region, ]maxRw, must be, to a first, approxi- 
mation, 1/2(2j~lw), for r/l ~ 1, which would be 

half the current flowing through the platelet area 
if the blocking platelet were removed. The current 
flowing around the platelet is in a sense a "dis- 
placed" current. Equating the current in the 
enhanced zone with the total displaced current 
gives a zone of width J J//max, or r. Thus, for 
rfl ~ 1 and large current density enhancement, the 
zone size is also very small compared to the length 
of the platelet. A somewhat more exact argument, 
which gives the same basic result can be made by 
finding the point of intersection of the tangents 
to the integrated current against position curve. 
The tangents to the curve are constructed at the 
platelet edge and at infinity, on the interface. 
Fig. 6 indicates schematically an initial flaw 
located at the edge of a blocking platelet in the 
enhanced current region. 

Table II gives the values of Je~it for several 
assumed initial flaw lengths, Le, and the approxi- 
mate zone size, R, of the enhanced current density 
region near the platelet edge where the current 
density exceeds ]'e~ig. The insulating platelet size 
was taken to be 1 cm, r/l was 10 -7,  andj~  was 
1 A cm -2. The zone dimension, R, was estimated 
from a calculation of/ 'y  using Equation 19. It 
could also be obtained from the approximation 
of Equation 19 since j y / j ~  ~--(l/2R) 1/2 , for r/l< 
(2RIl) 112 <~ 1. 

SODIUM J~=l Acm z 

ELECTROLYTE 

Figure 6 Metal-filled microcrack 
in enhanced current density 
zone. 
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TABLE II Microcrack size, Le, critical current density, 
]erit, and critical zone size, for ]~ = 1 Acm -2,1 = 1 cm, 
and r/l = 10-7 

L e (vm) Jerit (A cm -2 ) R (#m) 

10 2.5 X l0 s 8 X 10 -s 
100 2.5 X 104 8 X 10-6 

1000 2.5 X 103 8 X 10 -4 

It is seen that the current enhancement zones 
are many orders of magnitude too small, or that 
the experimentally observed critical currents of  
a few A c m  -2 are many orders of  magnitude 
lower than the calculated ones. The results thus 
indicate that the Mode I mechanism needs to be 
modified in order to account for the large discrep- 
ancy that exists between calculated and observed 
critical current densities. It is difficult to envisage 
that anomalously high viscosities for sodium (e.g., 
due to impurities or to some geometrical restric- 
tions in the capillary channel) could account for 
the discrepancy; rather, the results indicate that 
the effective critical stress intensity factor, Kieff is 
not  the same as the one that is appropriate for 
mechanical testing, Kie. The results require that 
Kieff is about equal to 0.1 KIe. Processes are, 
therefore, thought to occur at the crack tip that 
bring the critical stress intensity factor significantly 
below the mechanical Kie. One such process is the 
local injection of electrons from the sharp, sodium- 
filled crack tip. The field at the crack tip, Eo, is 
about EJ/r. From the observations of  De Jonghe 
et al. [2],  it is clear that r can be as low as 1 nm. 
Eo can thus easily reach local values of  l0 s V 
cm -1 (for E = = 1 0 V c m  -1 and L = 1 0 g m ) ,  
which may indeed lead to profuse local field 
injection of  electrons. This process would intro- 
duce significant electronic conductivity in the 
ceramic in the immediate vicinity of  the crack tip, 
leading to sodium deposition under pressure just 
ahead of the crack tip [1].  This effect could lead 
to crack growth at some critical field that is 
reached when the macroscopic current density is 
well below the one at which the mechanical stress 
intensity factor KI would exceed the critical stress 
intensity factor, KIe. 
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Appendix 
The crack opening displacement is calculated using 
a method based on the Theorem of Castigliano 
[8]. Fictitious forces, P, are applied to opposite 
sides of  the crack and later set to zero at the 
location where the crack opening displacement is 
to be calculated. The forces are applied in this 
case at the opening of  the elliptic-cylindrical crack. 
The displacement, r, is found to be 

r - ( A 1 )  
3P 

where Ue is the elastic s t ra in  energy and P is 
allowed to tend toward zero. Ue is expressed in 
terms of the previously calculated KI and the 
stress intensity factor due to the fictitious forces. 
The total stress intensity factor is 

P 
K I  = X I + - -  (A2) 

Orl) 1/2 

U~ is found from the strain energy release rate, G, 

Lfe ~-- f jad,  ( A 3 )  

Using the relation between KI and G (plane strain) 

K~ 2 
G = E '  (A4) 

we have 

Uo : ~ -  0 I + d/ (15)  

Using Equations A1 and A5, differentiating and 
setting P = 0 before integrating, 

r = ~-7 0 I +  (7rl) -1/2 dl 

(A6) 
2 (~ K I 

-- E '  dO (71-I) 1/2 d/ 

To find r(l) from Equation A6, we note that r is 
on both the left side and the right side of the 
equation inside the integral, since Equation 16 
shows that 

K I - 7" 1 -1 /2  ]~-~" 
7"g n g  

We then differentiate both sides of  A6 with respect 
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to  c rack  l eng th  a n d  get a resul t  o f  the  fo rm 

dr 
_ _  = kl2  r -3 
dl 

where  k is a c o n s t a n t  equal  to  

2 1 1 . 3 5 r / ' ~  

g t 71.3/2 ne 

The so lu t ion  to  A7 is 

l 3/4 
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